

MAS-003-001308

Seat No.

B. Sc. (Sem. III) (CBCS) Examination

October / November - 2016

Mathematics: 301(A)

[Linear Algebra, Calculus & Theory of Equation]
(New Course)

Faculty Code : 003 Subject Code : 001308

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70

1 Answer the following objectives:

20

- (1) Define linear span of vector set.
- (2) Define linear dependent vector set.
- (3) Define Range and Kernal of linear transformation.

(4)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
; $T(e_1) = (1,1)$, $T(e_1 + e_2) = (1,0)$, $T(e_1 + e_2 + e_3) = (1,-1)$ then $T(e_3) = \underline{\hspace{1cm}}$.

- (5) Define Eigen value.
- (6) State P-series test.
- (7) Give Newton Raphson formula to find approximate root of f(x) = 0.
- (8) Find N_T for $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x, y, z) = (x y + z, x + y z).
- (9) $T: U \to V$ then R_T is subspace of U is, True of False?
- (10) State D'Alembert's ratio test.
- (11) Give unite length interval in which possitive root of the equation $x^3 2x 5 = 0$ lies.
- (12) What is length of the tangent? Define.
- (13) Define Radius of Curvature.
- (14) Give formula to find radius of curvature of curve y = f(x).
- (15) Define point of inflexion.

- (16) Give condition for the curve y = f(x) is convex upwards at x = c.
- (17) Define multiple point.
- (18) Find radius of curvature at origin for $x^3 2x^2v 4v^3 + 5x^2 + 7v^2 8v = 0$
- (19) Define node.
- (20) Find radius of curvature of the curve $y = \log x$ at (1,0).
- 2 (a) Answer any three:

6

- (1) Check whether $\{(1,1,-1),(1,0,1),(1,1,0)\}$ is linearly dependent or not.
- (2) Prove that $W = \{(a,b,c)/2a+5b-c=0\}$ is subspace of R^3 .
- (3) Find R_T for, $T: \mathbb{R}^2 \to \mathbb{R}^3$, T(x, y) = (x, x + y, y).
- (4) Prove that composition of two linear transformation is also linear transformation.
- (5) Show that the series $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$ is convergent.
- (6) State D'Alembert's Ratio test and Raabe's test.
- (b) Answer any three:

9

- (1) Prove that intersection of two subspaces of v is also subspace.
- (2) Expand set $\{(1,1,1), (0,1,1)\}$ to form a base of vector space \mathbb{R}^3 .
- (3) Verify that $T: \mathbb{R}^4 \to \mathbb{R}^2$, $T(x, y, z, w) = (x y, y + z + w) \forall (x, y, z, w) \in \mathbb{R}^4 \text{ is linear transformation or not.}$
- (4) $T: U \to V$ be any linear transformation then prove that R_T is subspace of V and N_T is subspace of U.
- (5) Test the convergence of

$$\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\dots$$

(6) Test the convergence of $\frac{1}{1+2} + \frac{1}{1+2^2} + \frac{1}{1+2^3} + \dots$

- (c) Answer any two:
 - $V = \{(x,y)/x > 0, y > 0, x, y \in R\}$ for $\alpha \in R$ and $(a,b), (c,d) \in V$; (a,b)+(c,d)=(ac,bd) and $\alpha(a,b)=(a^{\alpha},b^{\alpha})$ check whether V is vector space or not.
 - (2) Prove that $\{1, x, x^2 + x, x^3 + 3x^2 + 2x\}$ is base of space $P_3(R)$.
 - (3) Vector v_k $(1 \le k \le n)$ of set $\{v_1, v_2, \dots, v_n\}$ is linear combination of remaining vectors then prove that $s_p\{v_1, v_2, \dots, v_n\} = s_p\{v_1, v_2, \dots, v_{k-1}, v_{k+1}, \dots, v_n\}$.
 - (4) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(a,b,c) = (2a+b-c, 3a-2b+4c) $\forall (a,b,c) \in \mathbb{R}^3$ and $B_1 = \{(1,1,1), (1,1,0), (1,0,0)\}$ $B_2 = \{(1,3), (1,4)\}$ then find $[T: B_1, B_2]$.
 - (5) Examine the convergence of $1 + \frac{1}{2} + \frac{1 \cdot 3}{2 \cdot 4} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} + \dots$
- 3 (a) Answer any three:

mula

6

10

- (1) Derive formula to find $\frac{1}{N}$ using Newton-Raphson formula.
- (2) Find radius of curvature for curve $S = c \log(\sec \psi)$.
- (3) Find radius of curvature at the origin for $x^2y + xy^2 + xy + y^2 3x = 0$.
- (4) Find radius of curvature of $y = 4 \sin x \sin 2x$ at $x = \frac{\pi}{2}$.
- (5) Find slope of oblique asymtotes of $y = \frac{x^2 + 2x 1}{x}$.
- (6) Find the position and nature of the double point on $x^3 + y^3 3xy = 0$.

(b) Answer any three:

- 9
- (1) Explain graphical method to find solution of given equation.
- (2) Derive formula to find pth root of given number using Newton-Raphson's method.
- (3) Derive convergence criterion of root for Newton-Raphson's method.
- (4) Prove that $y = e^x$ is concave upward everywhere and $y = \log x$ is convex everywhere.
- (5) Find all the asymtotes of $xy^2 = 4a^2(2a x)$.
- (6) Find multiple points on the curve $x^3 + y^3 3x^2 3xy + 3x + 3y 1 = 0$
- (c) Answer any two:

10

- (1) If y = mx + c is an asymptote to the curve y = f(x), prove that, $m = \lim_{x \to \pm \infty} \left(\frac{y}{x} \right)$ and $c = \lim_{x \to \pm \infty} \left(y mx \right)$.
- (2) Find radius of curvature at any point (x, y) on the curve $y^2 = 4ax$.
- (3) Derive formula to find radius of curvature for equation of the form x = f(t), y = g(t).
- (4) Derive formula to find approximate root of f(x) = 0 using false possition method.
- (5) Explain Bisection method to find approximate root of f(x) = 0.